A new regularity criterion for weak solutions to the Navier-Stokes equations

نویسنده

  • Yong Zhou
چکیده

In this paper we obtain a new regularity criterion for weak solutions to the 3-D Navier-Stokes equations. We show that if any one component of the velocity field belongs to L([0, T ); L(R)) with 2 α + 3 γ ≤ 1 2 , 6 < γ ≤ ∞, then the weak solution actually is regular and unique. Titre. Un nouveau critère de régularité pour les solutions faibles des équations de Navier-Stokes Resumé. Dans cet article, on obtient un nouveau critère de régularité pour les solutions faibles des équations de Navier-Stokes en dimension 3. On démontre que si une conposante quelconque du champ de vitesse appartient à L([0, T ]; L(R)) avec 2 α + 3 γ ≤ 1 2 , 6 < γ ≤ ∞, alors la solution faible est régulière et unique. Mathematics Subject Classification(2000): 35B45, 35B65, 76D05

منابع مشابه

Regularity Criteria Involving the Pressure for the Weak Solutions to the Navier-stokes Equations

In this paper we consider the Cauchy problem for the n-dimensional Navier-Stokes equations and we prove a regularity criterion for weak solutions involving the summability of the pressure. Related results for the initial-boundary value problem are also presented.

متن کامل

Regularity Criteria in Weak Spaces for Navier-stokes Equations in R

In this paper we establish a Serrin type regularity criterion on the gradient of pressure in weak spaces for the Leray-Hopf weak solutions of the Navier-Stocks equations in R. It partly extends the results of Zhou[2] to L w spaces instead of L spaces.

متن کامل

A Regularity Criterion for the Angular Velocity Component in Axisymmetric Navier-stokes Equations

We study the non-stationary Navier-Stokes equations in the entire three-dimensional space under the assumption that the data are axisymmetric. We extend the regularity criterion for axisymmetric weak solutions given in [10].

متن کامل

The Navier-stokes Equations in Nonendpoint Borderline Lorentz Spaces

It is shown both locally and globally that Lt (L 3,q x ) solutions to the three-dimensional Navier-Stokes equations are regular provided q 6= ∞. Here L x , 0 < q ≤ ∞, is an increasing scale of Lorentz spaces containing Lx. Thus the result provides an improvement of a result by Escauriaza, Seregin and Šverák ((Russian) Uspekhi Mat. Nauk 58 (2003), 3–44; translation in Russian Math. Surveys 58 (2...

متن کامل

On Regularity Criteria in Terms of Pressure for the Navier-stokes Equations in R

In this paper we establish a Serrin-type regularity criterion on the gradient of pressure for the weak solutions to the Navier-Stokes equations in R3. It is proved that if the gradient of pressure belongs to Lα,γ with 2/α + 3/γ ≤ 3, 1 ≤ γ ≤ ∞, then the weak solution is actually regular. Moreover, we give a much simpler proof of the regularity criterion on the pressure, which was showed recently...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

متن کامل
عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005